The use of F-response in defining interstimulus intervals appropriate for LTP-like plasticity induction in lower limb spinal paired associative stimulation.
نویسندگان
چکیده
BACKGROUND In spinal paired associative stimulation (PAS), orthodromic volleys are induced by transcranial magnetic stimulation (TMS) in upper motor neurons, and antidromic volleys by peripheral nerve stimulation (PNS) in lower motor neurons of human corticospinal tract. The volleys arriving synchronously to the corticomotoneuronal synapses induce spike time-dependent plasticity in the spinal cord. For clinical use of spinal PAS, it is important to develop protocols that reliably induce facilitation of corticospinal transmission. Due to variability in conductivity of neuronal tracts in neurological patients, it is beneficial to estimate interstimulus interval (ISI) between TMS and PNS on individual basis. Spinal root magnetic stimulation has previously been used for this purpose in spinal PAS targeting upper limbs. However, at lumbar level this method does not take into account the conduction time of spinal nerves of the cauda equina in the spinal canal. NEW METHOD For lower limbs spinal PAS, we propose estimating appropriate ISIs on the basis of F-response and motor-evoked potential (MEP) latencies. The use of navigation in TMS and ensuring correct PNS electrode placement with F-response recording enhances the precision of the method. RESULTS Our protocol induced 186±17% (mean±STE) MEP amplitude facilitation in healthy subjects, being effective in all subjects and nerves tested. COMPARISON WITH EXISTING METHOD We report for the first time the individual estimation of ISIs in spinal PAS for lower limbs. CONCLUSIONS Estimation of ISI on the basis of F and MEP latencies is sufficient to effectively enhance corticospinal transmission by lower limb spinal PAS in healthy subjects.
منابع مشابه
Effects of Neonatal C-Fiber Depletion on Interaction between Neocortical Short-Term and Long-Term Plasticity
Introduction: The primary somatosensory cortex has an important role in nociceptive sensory-discriminative processing. Altered peripheral inputs produced by deafferentation or by long-term changes in levels of afferent stimulation can result in plasticity of cortex. Capsaicin-induced depletion of C-fiber afferents results in plasticity of the somatosensory system. Plasticity includes short-term...
متن کاملThe effect of ketamine on synaptic transmission and synaptic plasticity in CA1 area of rat hippocampal slices
The effect of ketamine (1-100 µM), which has NMDA receptor antagonist properties, on synaptic transmission and long-term potentiation (LTP) in CAl area of rat hippocampus was examined in vitro. Field potentials were recorded in pyramidal cell layer following Schaffer collateral stimulation. Primed-burst stimulation (PEs) was used for induction of LTP. The amplitude of population spiks (PS) was ...
متن کاملCortical Plasticity Induced by Transcranial Magnetic Stimulation during Wakefulness Affects Electroencephalogram Activity during Sleep
BACKGROUND Sleep electroencephalogram (EEG) brain oscillations in the low-frequency range show local signs of homeostatic regulation after learning. Such increases and decreases of slow wave activity are limited to the cortical regions involved in specific task performance during wakefulness. Here, we test the hypothesis that reorganization of motor cortex produced by long-term potentiation (LT...
متن کاملSensorimotor deprivation induces interdependent changes in excitability and plasticity of the human hand motor cortex.
Prolonged limb immobilization deprives sensorimotor cortical areas of an important source of excitatory input, as well as of motor output. Previous work has described effects on motor excitability but it is unclear whether motor plasticity is also influenced. In two groups of eight healthy human subjects, the left hand was immobilized for 8 h to induce sensorimotor deprivation of the cortical r...
متن کاملEarly visuomotor integration processes induce LTP/LTD-like plasticity in the human motor cortex.
To investigate whether visuomotor integration processes induce long-term potentiation (LTP) and depression (LTD)-like plasticity in the primary motor cortex (M1), we designed a new paired associative stimulation (PAS) protocol coupling left primary visual area (V1) activation achieved by hemifield visual evoked potentials (VEPs) and transcranial magnetic stimulation (TMS) over the left M1, at s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neuroscience methods
دوره 242 شماره
صفحات -
تاریخ انتشار 2015